第三章 外在威胁


  有了前一章确定的研究方法与原则,现在就让我们展开实质性研究。首先这里要研究的是,我们人类正面临怎样的大问题,以及将会面临怎样的大问题。

  作用于人类的无非是两个方面的因素,一个是外部的因素;另一个是人类自身的因素。本章则是专门就外在因素有可能给人类造成的威胁和影响进行研究。

  第一节  宇宙的威胁

  站在地球上,看到高山巍峨、江河浩荡、大海壮阔,我们常常感叹我们星球的伟大,但是,站在宇宙的角度,地球是非常渺小的,它属于太阳这一恒星体系的一个小成员,质量仅占太阳系的34万分之一,且完全受制于太阳。

  在茫茫宇宙中,太阳扮演的角色远远小于太阳系中地球的分量,太阳系作为一个恒星体系,在它所处的银河系中所占的分量仅仅2000亿分之一,而银河系在宇宙中的分量还不到3000亿分之一,由此可知,说太阳系在宇宙中只是大海中的水滴,只是高山中的砂粒是毫不过分的。

  在考虑宇宙对人类的威胁时,这里首先把人类与地球统一起来考虑,因为地球出了大问题人类就无法生存;而后再把地球与太阳统一起来考虑,因为地球受制于太阳,太阳出了大问题,地球生态就会遭到彻底破坏,人类也无法生存;最后把太阳系作为一个点进行考虑,因为在宇宙中太阳系仅仅只是一个小点。

  一、引力与恒星历史

  自然界有一种力不受任何物体的阻挡,不受任何距离的限制,这就是物质之间的引力。

  人站在地球上拥有重量,那是地球对人有引力,引力的大小等于人的重量;月球围绕地球旋转,不会逃离地球,是因为地球对月球的引力所致;同样,地球围绕太阳运转,是太阳对地球有引力;太阳围绕银河系中心运转,也是因为银河系对太阳有引力。

  引力最早是牛顿观察苹果从树上落下,却不是飞向天空而发现的。在日常生活中,许多自然现象与引力有关,大海潮起潮落,这种潮汐作用是因为月球与太阳对海水的引力所致。太阳对地球的引力不仅作用于地球面对太阳的一侧,背对太阳的一侧也受太阳引力的作用。相距数万光年之遥的两个星球之间同样存在引力。

  除了引力之外自然界还有三种力,这就是电磁力与原子核内部的强力和弱力。在四种自然力中最强大的力是强力,但它只作用于原子核的范围之内。第二强大的力是电磁力,它只有强力的百分之一,但电磁力作用的范围比强力远,正是电磁力的作用使原子核不能相互接触,所以强力不会释放出来。另外,要释放强力离不开中子,弱力则可以使质子衰变为中子,是强力释放必不可少的帮手。那么,引力是自然界最弱的力,相对于原子中的电磁力要弱数亿亿倍,相对强力更是还要弱得多,但它不受任何距离与物体阻挡的限制,无所不在、无所不有,于是它便集无数的弱小变为无比强大,并最终战胜其他的力,统治了我们的宇宙。

  恒星是一种使用核能产生光和热的星球,核能的产生是因为当星球足够大时,它巨大的引力便能够使核心部位的温度不断升高,直到这一温度达到1000万度以上。而此时,组成恒星的主要元素氢原子核将产生剧烈的运动,使自己最终可以冲破原子核之间电磁力的排斥,直接发生相互碰撞,从而产生核聚变,将强力释放出来。

  氢的核聚变是由4个氢原子结合成1个氦原子的过程,在这一核合成中要损失0.7%的质量,这是原子核内强力释放的代价,正是这损失的很少的质量却能产生巨大的能量。

  像我们太阳这样中等大的恒星,它的核聚变有两次,一次是氢聚变,一次是氦聚变。

  在氢聚变发出光和热的同时,它所产生的氦则不断沉积于恒星的核心,当大量的氢聚变为氦后,恒星核心部位的氢已经消耗殆尽,留下的主要是氦原子,但核心的外部氢却继续在燃烧,于是在核心部位两股力同时发生作用,一股是恒星的引力,另一股是核心外部氢聚变产生的巨大膨胀压力。当两股力量结合的力度可以使核心部位的温度达到上亿度时,氦原子核的猛烈运动,终将使自己也能够冲破电磁力的束缚,达到相互之间可以直接发生碰撞,从而产生氦聚变,将氦原子核中的强力释放出来。

  氦的燃烧是由氦聚变为氧和碳的过程,由于它所释放的能量比氢聚变的能量更大,此时的恒星内部就好像又点燃了一颗恒星一样,这颗内部的恒星用其巨大的力量猛地将外部的恒星顶了出去,使得星球的直径突然变大100倍以上,而体积则扩大100万倍以上。新的星球虽然十分巨大,但因为它表面的温度低于原来的恒星的表面温度,呈红色,因此称为红巨星。

  氦聚变持续的时间比氢聚变短,氦聚变的后期,恒星进入不稳定状态,它外围的物质会被抛出一些,而主要由碳和氧组成的核心部位会塌陷成一颗密度很高、温度也很高的白矮星。

  白矮星是死亡的恒星,虽然温度很高,但这是原来恒星遗留下来的热量,它内部已经不能再发生热核反应,通过百亿年的慢慢冷却,最后将变成一颗冰冷的星球。根据人类的标准,白矮星是价值连城的材料,因为其物质内部呈晶格状结构,就像钻石的结构一样,只不过这颗巨大的钻石我们却难以得到。

  因为氢聚变相对于其他聚变要稳定,而且持久,所以,天文学上将恒星的氢聚变阶段称为恒星的主星序阶段。

  恒星在主星序停留的时间随着恒星质量的增大迅速地变小,太阳这样质量的恒星在主星序停留的时间约为100亿年,但是,一颗质量为0.3倍太阳质量的恒星却会燃烧上万亿年,而质量为5倍太阳质量的恒星只能燃烧几千万年。这是因为恒星的质量越大,引力就越大,强大的引力会促使其内部核聚变速度加快,当恒星的质量大到一定程度时,极其猛烈的核聚变将根本无法使恒星稳定下来,从而导致恒星的整体爆炸,因此,恒星不可能无限的大。目前为止,我们观测到的最大的恒星是R136α1星,它的质量大约为太阳质量的300倍。

  恒星的质量也不可能太小,最小的恒星一般不会小于太阳质量的8%。因为,星球太小其引力将不能够点燃内部的氢原子,核聚变便不能发生,也就不能发出光和热,所以就不能称之为恒星。

  恒星最后的命运很大程度上也由恒星的质量所决定。一颗质量小于0.7倍太阳的恒星,由于引力不是足够的大,只会燃烧氢,氦则永远不会被点燃。一颗质量为0.7-8倍太阳的恒星,其命运与太阳一样,在这一质量区间内,小一些的恒星先是燃烧氢,之后燃烧氦,大一些的恒星还会燃烧碳,在完成这些燃烧之后将安静地演变为白矮星。

  一颗质量大于8-10倍太阳的恒星其死亡将是极其猛烈的爆炸,因为恒星超过8-10倍太阳质量时,巨大的引力会使恒星在燃烧完氢、氦和碳之后,将继续点燃其他元素,它们依次是氧、氖、硅、铁,每一次点燃一种新的重元素,其恒星内部又将产生一个能量更大的恒星,从而将外部恒星一层层顶出去,最后使恒星的直径达到百亿公里。当这一点火过程最后轮到铁的时候,铁的核燃烧不仅不释放能量,反而要吸收能量,恒星内部突然失去能量的支撑,于是,灾难性的结局发生了,直径达百亿公里的恒星将猛然向中心坍塌,形成极其剧烈的爆炸,它的物质会被抛出数千亿公里之外,这种爆炸称为超新星爆发。

  超新星爆发时,恒星的核心部位会受到猛烈的压缩,从而把电子都压进质子中,由于电子带负电荷,质子带正电荷,当电子压进质子后,正、负电荷抵消,变为中子,因而形成极其致密的中子星,中子星的密度可达每立方厘米上亿吨。

  中子星的磁场极强,比地球磁场强108至1015倍,而且旋转很快,达每秒几百转,能够通过两个磁极向外发射强烈的电磁波(光)。由于中子星的磁轴与旋转轴不一致,当其旋转时它所发出的电磁波则一圈一圈地非常有规律地在太空扫射,这便是中子星的灯塔效应。中子星的灯塔效应可以在宇宙中指示方向,我们向宇宙中发射的多颗飞行器,跟外星人带去的信息都是以中子星指示太阳系位置的。

  一颗质量更大的恒星,当其死亡爆炸时,猛烈的坍塌会把原子核都压碎,形成更加致密的天体,其致密程度使光都无法逃脱出它的引力,这就是黑洞。黑洞在宇宙中的存在已经得到证实。

  二、黑洞吞噬

  我们站在地球上向天空抛出一个物体,这个物体最后还会落回地面,这是因为地球对这个物体有引力,如果地球没有引力,这个物体就会顺着抛出的方向飞向太空,永不返回。但是,即使地球有引力,当这个物体向天空抛出的速度达到一定程度后,它就会摆脱地球的引力一直向前,再也不会返回,这种能够摆脱星球引力的速度称为逃逸速度。地球表面的逃逸速度为每秒11.2公里,也就是说,我们站在地球表面,以每秒11.2公里的速度向太空抛出一个物体时,这个物体将不再落回地面,而是飞向太空。不同星球表面的逃逸速度是不一样的,如太阳表面的逃逸速度为每秒617公里,月球表面的逃逸速度则为每秒2.38公里。之所以太阳表面的逃逸速度比地球大得多,是因为太阳的引力比地球大得多;反之,月球表面逃逸速度小则是因为月球引力比地球小。

  光速是自然界最快的速度,为每秒30万公里。当一颗星球的引力极其大,表面逃逸速度达到光速时这就是黑洞,它说明连光都不能从其巨大的引力中摆脱出来。如果把地球压缩成一个半径1厘米的小球就是黑洞,这样的尺寸比乒乓球还小。

  宇宙中的黑洞不在少数,我们太阳系有没有可能落入黑洞呢?如果太阳系落入黑洞无疑就是人类的末日。

  银河系最大的黑洞就是银心的黑洞,首先让我们来分析这一黑洞对我们的威胁。我们知道,太阳绕银心运转一周需2.5亿年,太阳形成了50亿年,照此,应该绕银河系中心运转了20圈,今天看来,还没有任何迹象表明太阳系的运转有失常的地方。银心的黑洞所吞噬的是银心范围的恒星,其他恒星要被这个黑洞吞噬,至少首先要进入银心范围才有这样的可能。太阳系在银河系的位置是距银心较远的外侧,离银心的距离达2.7万光年,在绕银心运转的过程中,只要不极大地改变自己的运行轨迹,在百亿年之内太阳不可能运行到银心的范围。而要极大地改变太阳的运行轨迹,除非太阳受到与之相当的恒星的撞击,而要遭遇这样的撞击,带给人类的毁灭性灾难也就不是黑洞吞噬的时候了,而是在太阳被撞击的一刻就发生了。

  从另外一种角度也可以说明,在太阳死亡之前不可能被银心的黑洞吞噬。宇宙历史有138亿年,科学家普遍认为,宇宙形成后不久就形成了银河系,但更具体的数值却有分歧,欧洲南天天文台(ESO)的研究报告估计,银河系大致形成了136亿年,银心黑洞的质量约为260万个太阳的质量,而银河系约有2000亿倍太阳的质量,这说明,银心的黑洞用136亿年时间吞噬的恒星,仅为整个银河系质量的8万分之一,如果按此速度吞噬整个银河系还需要约1000万亿年,而太阳在主星序上的时间只剩50亿年,所以,完全不必为银心黑洞的吞噬感到忧虑。

  那么,除了银心的黑洞之外是否还会有别的黑洞吞噬太阳呢?最有可能出现黑洞的除银心之外,在球状星团的中心也有可能会出现大的黑洞。作为球状星团,数万到数百万颗恒星集中在一个不大的区域范围内,其中心部位便很有可能会出现较大的黑洞,当然,这样的黑洞与银河系中心的黑洞相比肯定小得多,最多不过上百个太阳质量,或者上千个太阳质量。目前,天文学家已经通过观测发现一些球状星团中心有X射线,这就是球状星团中心有黑洞存在的证据。

  银河系中大约有500个球状星团,它们离我们都很远,我们能够看到的最明亮的球状星团是半人马座ω,它有约100万颗恒星,距我们1.6万光年。而离我们最近的球状星团是M4,大约有10万颗恒星,离我们的距离为7200光年,这当然是一个十分安全的距离。

  除了银心的黑洞和球状星团中心的黑洞外,还存在许多由独立的大恒星死亡形成的黑洞,在天文学家对宇宙的观测中,同样发现了这样的黑洞。但是,在目前我们已经发现的有可能是黑洞的强X射线源中,它们无一例外距我们都十分遥远。其中最有名的是天鹅座X-1,这是一个距我们较近的黑洞,距离太阳系约1万光年。迄今为止,观测到的离我们最近的黑洞位于人马座,它与编号为V4641SGR的一颗普通恒星组成一个双星系统,距太阳系约1600光年。那么,不论是1万光年还是1600光年,距离都已经是足够的远了,根本不可能影响太阳系的安全。

  事实上,一个中等大的黑洞相比一颗恒星对太阳系的威胁差别并不大,充其量,黑洞致命威胁的范围稍大一些,但由于恒星之间的距离十分巨大,这种范围相对于星球之间的距离几乎可以忽略不计。同时,在宇宙中,能够形成黑洞的大的恒星是极少的,大约1万颗恒星中才有一颗有可能形成黑洞,这也就说明,太阳遭遇黑洞的概率仅有太阳遭遇恒星撞击概率的万分之一。

  三、恒星与独立行星撞击以及超新星爆发

  (一)恒星与独立行星撞击

  今天的宇宙是恒星的世界,恒星在宇宙中占的比例不仅大,而且也是现实可见的。太阳就是一颗恒星,我们人类正是依托它的光辉生存的。银河系的恒星数以千亿计,太阳会不会与其中某一颗发生相撞,或者受其严重扰动,从而导致地球的整体生态被破坏,致使人类遭到灭绝呢?

  首先让我们来分析太阳系所处的区域环境。太阳处于银河系外围,银河系外围恒星的密度远比银心与核球这样的中心区域的密度小。离太阳系最近的恒星是半人马座α星,这是一个三合星,即由三颗恒星组成的恒星系统。在半人马座α星中,以半人马座αC离我们更近,距离为4.25光年,所以也称之为比邻星。比半人马座α稍远的是距我们5.96光年的巴纳德星和距我们7.8光年的沃尔夫359,其他的恒星距离都超过了8光年,且在10光年之内的恒星系统总数只有7个。

  以我们对半人马座α星的观测而言,它目前的运行方向略带一定角度平移向我们靠近,许多年后它与我们的距离会达到最小值3光年,然后又会远离我们而去。

  关于恒星撞击的可能性有多大,可以这样的一组形象数据进行说明:如果将直径达139.2万公里的太阳缩小为直径为1毫米的小沙子,离我们最近的恒星与我们的距离则达29.2公里,而我们周围恒星的平均距离则为52公里,由此看来,它们对撞的机会是极小的。

  更重要的是,在巨大的立体空间中分布的这些十分稀疏的“小沙子”并不是毫无规律,满天飞扬的,它们行动十分缓慢,而且极有规律。以太阳的运行为例,如按以上形象的距离缩小,这粒“小沙子”每年运行距离仅4.92米。而且所有的恒星都无一例外地在自己的轨道上绕银心运转,它们相互尊重,并遵守规律。在宇宙中,越是质量大的天体规律性越强,受外力扰动的可能性越小,一颗恒星级的天体,除了银心的引力左右它外,一般的力量是不可能改变其轨道的。因此,像太阳这种处于天体稀疏的星系外围的恒星,要发生恒星对撞或者严重的相互扰动其可能实在太小,数千亿年也不会发生一次。

  在宇宙中还有一些星球,它们不发光也不发热,不属于恒星,但它们又不隶属于任何恒星系统,因此不是普通的行星,它们的存在,只是因为最初形成时体积太小,以至于不能靠引力点燃中心的氢原子,于是只能成为一个独立的系统围绕星系的中心运转,我们不妨称它们为独立行星。那么,它们是否可能与太阳发生对撞或相互扰动呢?

  由于在宇宙中,自然形成的物体小的总比大的多,因此,独立行星的数量比恒星还要多,在太阳系周围空间很可能也有这样的星球,只是没有被发现而已。然而,即使如此,数量也会是少之又少。如果套用前面的形象比喻,它撞击或者严重扰动太阳的危险性,就如同在一个方圆数十公里的范围内,多了二三粒运行缓慢的更细小的“沙子”而已。

  而且,独立行星与恒星一样,其运行是有规律的,它们受银河系中心的引力所统治,围绕银心有序地运转,各自有自己的轨道,互相影响极小,这就使得这些稀疏分布的几粒“小沙子”对撞的几率更加的小了。

  实际上,那怕两个星系发生合并,即使恒星最密集的中心区域交汇,相互撞击的机会都小之又小,其概率不过千亿分之一。因为相对恒星的尺寸,恒星之间的距离实在太大了。

  一定会有人问,既然天体相撞的可能那么的小,为什么我们还是能观察到天体相撞的情况呢?

  天体相撞或者天体相互干扰一般只在三种环境下发生:一是在星系的中心区域;二是在星团的中心区域;三是在伴星之间。任何星系的中心地区都是物质与恒星最密集的区域,这种密集的状态主要取决于它的先天因素,即在星系最初形成的过程中,就慢慢形成了一个引力的中心地带,这个引力的中心地带必然会利用自己的引力吸纳尽可能多的物质,使自己成为星系的中心。同时,在星系形成之后,受引力的作用,稍微靠近中心区域的物质与天体也会偏向于向中心集中。但是,天体向星系中心集中的速度是非常缓慢的,对于我们太阳系这样的外围恒星,数千亿年内根本不会出现这样的问题。

  星团的情况也与此类似,在星系的形成过程中,星系中的一些小的局部区域物质比较稠密,于是形成了恒星非常密集的星团,数万或者数百万颗恒星聚集于一个小的空间。而且星团也必然有自己的中心,这个中心是星团中恒星与物质更密集的地区,在这里恒星撞击的机会自然会大得多。好在我们太阳系与任何一个星团都相距遥远,当然不会加入它们拥挤的行列。

  在宇宙中有许多恒星系统是双星或者三合星,即两颗恒星或者三颗恒星相距很近,且缠绕在一起。在这样的系统中,由于引力的相互作用,任何一颗星对其伴星都会影响很大,任何一颗星也都很大程度上受其伴星的影响,因此,这样的伴星系统常常很不稳定,我们太阳系显然不属于这样的恒星系统。

  (二)超新星爆发

  超新星爆发是恒星世界已知的最剧烈的爆发现象,它使恒星的亮度在极短的时间增加上千万倍,甚至上亿倍,恒星物质抛出的速度可达每秒上万公里,它的强大辐射能够强烈地影响很大的区域。要谈宇宙的威胁,超新星爆发的威胁要远超过恒星与独立行星的撞击和扰动,更是远超过黑洞的吞噬,超新星的爆发才是真正应该值得重视的宇宙威胁。

  超新星分为两种,即I型超新星和II型超新星。I型超新星爆发是密近双星演化的结果,原理是这样的:一个双星系统要是两颗恒星靠得非常近,且这两颗恒星具有中等大的质量,其中一颗大一些的恒星必定会先期演化为致密的白矮星,另一恒星则还在燃烧,而恒星是气体星球,是流动的,于是,白矮星便会利用自己的引力吸积那颗伴星的物质,被吸积的物质在白矮星的周围会形成一层氢壳,当氢壳的质量达到一定程度之后,受白矮星引力作用,其温度会达到非常高,当温度达到1000万度后,氢原子核被点燃,于是氢的核聚变发生了。如果白矮星吸积伴星物质能够达到足够的多,在氢聚变完成以后又会发生氦聚变,氦聚变完成后再发生碳聚变。但是,白矮星本身的成分主要就是碳,这时的碳聚变将不是在外围点火,而是从极其致密的白矮星的中心首先点燃,碳的聚变会以极快的速度由中心传递到外围,形成巨大的爆炸,炸得粉碎的白矮星连同它的外围物质被猛烈地抛向太空。

  II型超新星是大恒星演化到后期发生的剧烈爆炸,这在之前已有介绍。

  根据估计,银河系每隔25年到75年就有一次超新星爆发,但我们真正观察到的却很少,这与太阳系处于银道面上,在观测银河系时总会被其他恒星以及星际物质遮挡住有关。

  超新星爆发对于人类的威胁主要在两个方面。一方面,在爆发之初,它的热辐射会使地球的温度升高,导致地球生态平衡破坏。迄今为止,人类在银河系观察到了七次超新星爆发,它们距我们都很远,最近的是1006年的超新星,距我们4200光年,所以当时没有对我们形成任何影响。但是,近距离的超新星爆发就不是这种结果了,根据计算,如果在距离我们最近的半人马座α星的位置爆发超新星,在约一个月之内地球上空将会像增加了一个六分之一大小的太阳,地球的平均气温将会上升四五度。

  另一方面就是γ射线与其他有害射线的辐射。这个问题比热辐射要严重得多,因为,超新星所爆发的极其强烈的γ射线与其他有害射线的辐射,可以在很大范围内对生命构成威胁。那么,根据美国航空航天局戈达德飞行中心的天体物理学家尼尔·格雷斯和他的同事的一项专门研究,只有距地球25光年之内的超新星爆发,才能够达到充分削弱臭氧层,使到达地表的紫外线剂量增加两倍,从而严重影响人类的生存。

  综上所述,对于超新星我们必须提防的范围是在25光年之内。事实上根据天文观测,这一范围之内是没有产生超新星爆发条件的恒星的。因为产生超新星爆发的条件很明显,对I型超新星必须是一对相距很近的中等大的恒星,对于II型超新星必须是质量超过8倍太阳质量的恒星。这样的恒星在近距离是很容易被发现的,但在我们附近并没有这样的恒星。

  然而,太阳系今天所处的银河系的位置虽然在附近没有可能出现超新星,但太阳并不是静止的,它在以每秒220公里的速度绕银心运转,而且太阳轨道附近的恒星也在依一定的规律运行,说不定过了多长时间后我们会赶上一次在25光年内的超新星爆发。根据科学家计算,在距离我们100光年范围内平均7.5亿年会有一颗超新星爆发,按此推算,在距我们25光年的范围之内,每480亿年才有一次爆发超新星的可能。而我们的太阳自形成至今才50亿年,且50亿年后又变成了红巨星,人类已经不能在此生存,因此,这样的事件危及我们的可能是极小的。

  实际上,要是我们真的赶上这样的事也不用害怕,因为,超新星爆发之前有明显的征兆,这种征兆至少可以提供给我们100万年以上准备期。那么,在观测到附近有可能爆发超新星之后,我们完全有能力采取一系列有效的防范措施。极端而言,为了抵消臭氧层的破坏,我们可以研究出生产并向天空中大量排放臭氧的措施,或者防止臭氧层遭破坏的措施;为了防止紫外线的强烈辐射,我们可以研制出防紫外线辐射的护肤品、防辐射服装;在γ射线最强烈的最初20多天中,我们甚至可以呆在防辐射建筑或者防空洞中,少数必须在室外工作的人员则可穿上防辐射太空服。要是爆发的超新星距离更近,我们还要防止由此带来的热辐射的袭扰,由于冰川融化,海平面会升高,因此我们要迁离一部分沿海地区的居民;由于洪水、飓风频繁,以及有可能出现一些流行疾病,也都要作出相应的防范。总之,要遭遇这样的情况是很麻烦的,但是不可能对人类的整体生存构成威胁。

  四、微黑洞与反物质星球威胁

  今天对宇宙的认识是建立在量子力学和广义相对论基础之上的,量子力学和相对论的建立仅一个世纪,因此,我们对宇宙的认识远不能反映宇宙的本质。根据现有宇宙学理论的分析,还有两种始终未被证实的天体,如果它们真的存在,对太阳系和人类的威胁有可能会是毁灭性的,它们就是微黑洞和反物质星球。

  (一)关于微黑洞威胁

  按照大爆炸宇宙学,宇宙大爆炸之初,巨大的压力可能会把不同区域的物质压缩成一个个小质量的黑洞,这些黑洞小的只有几万公斤,大的可能有一颗小恒星那么大,人们称这样的黑洞为微黑洞或者原生黑洞。

  如果真有这样的微黑洞,历经138亿年宇宙的历史后,这些微黑洞会是什么样的情况呢?

  按自然界的规律,在无规则形成的物体中,质量和体积越小的物体数量越多,反之,质量和体积越大的物体数量则越少。宇宙大爆炸时形成的微黑洞也应该如此。大部分是质量很小的微黑洞,像地球或者月球质量的较大的微黑洞只是少数。那么,这些微黑洞会对我们构成怎样的威胁呢?要回答这个问题首先要了解黑洞的一些特性。

  虽然黑洞连光都不放过,但黑洞并不是完全一毛不拔,黑洞也有蒸发,而且质量越小的黑洞蒸发的速度越快,越大的黑洞蒸发的速度越慢。一个银河系质量的黑洞蒸发期为10100年(即1之后100个0),一个太阳质量的黑洞蒸发期1065年,因此,这样大的黑洞的蒸发时间是十分漫长的,也许比宇宙存在的时间还要久远。但是,一个10亿吨质量的黑洞蒸发却只有100亿年,一个质量为100万吨的黑洞蒸发期仅10年,一个质量为1吨的黑洞10-10秒便蒸发完了,其蒸发期还不到一瞬间。

  考虑到黑洞在存在的过程中多少都要吞噬一些物质,因此,人们普遍以10亿吨质量为界,认为低于这一质量的微黑洞应该都已经蒸发殆尽,而高于这一质量的微黑洞应该还存在宇宙中,这一质量大约相当于一座较大的山峰。

  大爆炸形成的微黑洞绝大部分是非常小的,超过10亿吨的黑洞应该是寥寥无几,因此,大多数的微黑洞在138亿年的时间中已经全部蒸发了。而那些大的微黑洞情况刚好相反,它们本来就蒸发得很慢,加上它们又不断地吞噬所有靠近自己的物质,这便使得黑洞会越长越大,而越大的黑洞又越难蒸发,因此,这样的黑洞如果能到达今天,它的质量许多都应该比138亿年前还要大。

  微黑洞的分布密度与宇宙中的物质分布密度应该是大致一样的,尤其它们作为古老的天体,如果今天还有存在的话,应该大多数集中于星系的中心区域。同时,如果微黑洞的判断是正确的话,银河系也一定会有这样的微黑洞,而且大多数也应集中于银河系中心区域。对于集中于银心附近的微黑洞距离太阳遥远,不会危及太阳的安全,但是,也一定会有一部分微黑洞分布于银河系的其他区域,那么,这些微黑洞会不会危及太阳系的安全呢?

  让我们以一个质量为月球大小的微黑洞撞击太阳作为说明,微黑洞要大到月球的质量已经是足够的大了,但是,月球质量的黑洞其尺寸仅0.1毫米,如同一颗勉强可以辨认的细沙粒。

  如果月球这样大的天体撞击太阳首先会出现惊天动地的壮观撞击场面,而后月球会被太阳吞噬。但是,一颗拥有月球质量的微黑洞“细沙粒”相遇太阳时情况完全不同,当一颗如此细小的“沙粒”拥有十分巨大的质量时,只要稍微具备一定的速度,它的动能都十分巨大,但“细沙粒”的横截面极小,进入太阳后阻力将很小,因此,它会轻易地从太阳的一侧穿入而从另一侧穿出,继续进入太空。微黑洞不会被蒸发,而是在吸收一些太阳的质量后再辐射出一些能量,自己的重量会有所增加,由于微黑洞吸收的质量很有限,太阳则好像完全没发生什么事情一样,继续自己的燃烧。

  然而,当这颗“细沙粒”速度十分缓慢时,在穿入太阳后就会被太阳的引力和阻力留在了太阳内部,如果出现这种情况,这个微黑洞会不断地将太阳的物质据为己有,微黑洞的质量不断地增大,太阳的质量不断减少。起初,太阳外表看来似乎什么都没有发生,经过上百万年的不断吸噬,终于有一天,太阳内部的核聚变系统彻底遭到破坏,整个太阳会突然塌陷进微黑洞,微黑洞也就变成了一个拥有大约太阳质量的黑洞,地球以及其他的行星依然绕着这个拥有太阳质量的小天体运转,而太阳的光辉则不再存在,地球表面温度很快下降,最后成为一颗任何生命都无法生存的冰冷世界。

  当然,微黑洞也有可能直接撞上地球,如果出现这种情况与微黑洞直接撞上太阳其情况也是类似的,即要么穿地球而过,要么将地球吸噬殆尽,最后使地球塌陷进黑洞。

  关于微黑洞的威胁要分两种情况来考虑,一种是以微黑洞确实存在为假设,另一种是要分析微黑洞存在的真实性。

  如果我们假设微黑洞确实存在,在经过138亿年的蒸发后,少量幸存的大一些的微黑洞与我们相遇的机会不会比千亿年一次更高。即使真的相遇,会有三种结果,第一种结果,微黑洞穿太阳而过,不会对太阳构成多大伤害;第二种结果,钻入太阳内部,吸噬太阳物质,使之塌陷并毁灭。这两种结果在之前已有阐述。

  第三种结果则是微黑洞被太阳的引力所俘获,成为太阳系家族中的一个成员。微黑洞作为比太阳小的天体,当其进入太阳的引力范围,又具有一定的速度,只要不对撞太阳,被太阳俘获为一个受自己统治的天体是很自然的。

  在上述3种可能中,第三种可能的概率最大,因为撞入太阳必须对得很准,而要被太阳俘获只要进入足够的引力范围就可以了;第一种可能的概率次之,因为一个天体相对于另一个天体其相对速度一般都会很高,尤其在强大的引力作用下,会使这种速度提得更高;第二种可能的概率是最低的,因为一个天体慢慢撞入另一个天体的可能性实在太小。而在上述三种可能中,其实只有概率最小的第二种可能对太阳才能真正构成威胁,这就使微黑洞的威胁变得更加微不足道。

  下面我们再来看微黑洞存在的真实性,按照著名科学家霍金的理论,微黑洞广泛地存在于宇宙中,如果真是这样的话,就必然会有微黑洞吸噬恒星的情况,因为宇宙中拥有数百万亿亿颗恒星,既然微黑洞普遍存在,就不可能没有恒星遭遇微黑洞并被吸噬的情况,那么要是这样,便一定会出现恒星突然坍塌并放出大量X射线的事件,如果我们周围有微黑洞,也应该有其吞噬物体并喷发X射线的情况。但是,在对茫茫宇宙的观测中,我们却始终没有发现微黑洞的踪影。

  (二)关于反物质星球威胁

  反物质是根据大爆炸宇宙学推断出来的。我们知道,组成物质的基本单位是原子,原子由中心的原子核和外层电子组成,原子核则由质子和中子组成,电子带负电荷,质子带正电荷,中子不带电荷。我们喝的水是由两个氢原子和一个氧原子组成的水分子,我们吃的盐是由一个钠原子和一个氯原子组成的氯化钠分子。我们看到和感受到的一切无不都是由物质组成,无数的电子、质子、中子以及由它们组成的原子和分子存在于这个宇宙中。

  但是,根据大爆炸宇宙学原理,在大爆炸形成宇宙物质世界的同时,也应该形成了差不多同等数量的反物质。所谓反物质,就是与带负电荷的电子相对应的带正电荷的反电子,与带正电荷的质子相对应的带负电荷的反质子,中子虽然与反中子一样都不带电荷,但其他性质则相反。反电子、反质子和反中子结合在一起便形成了反原子,反原子的组合又形成不同的反分子,从而形成反物质的世界。

  较早科学家就从实验室获得了反电子、反质子和反中子,它们与物质相遇会发生湮灭,释放出能量和γ射线。如果太阳与一个太阳大小的反物质星球相遇,将会变成巨大的火球和十分强烈的γ射线,之后将会消失,消失的太阳将以能量的形式存在于宇宙中。因此,太阳如果遭遇大的反物质天体,对于人类将是灭绝性灾难。

  那么,如果按照大爆炸宇宙学的判断,宇宙中存在与物质大致相等的反物质,反物质必然会充满宇宙,这就不可避免地会发生反物质星球与物质星球相遇并产生湮灭的事件,但实际情况是怎样的呢?

  这些年来,在寻找反物质方面科学家做了大量的工作,1979年,美国科学家把一个有60层楼高的巨大的气球放到离地面35公里的高空,猎取了28个反质子,这是一个极小的数据。之后,美籍华人科学家丁肇中组织了一项太空研究,也猎获了极小的反质子。在科学实验室也能获得反物质粒子。多项研究表明,宇宙中大块的反物质是不存在的,至少在3000万光年之内不会有反物质天体。也就是说我们所在的银河系以及本星系群肯定不会有反物质天体。

  科学家的研究原理并不难理解,以对太阳确定是否是反物质为例,太阳风时刻都在吹过我们的地球,太阳风的主要成分是质子,如果太阳是反物质,它所产生的质子便都会是反质子,而不可能只有个别的反质子(这个别的反质子与质子发生湮灭,都不足以让一只100瓦的灯泡发光几十亿分之一秒),地球必定总是遭遇这些反质子的湮灭。而事实并非如此,因此完全可以确认太阳是由物质而非反物质组成。

  同样的方法可以用于对银河系和本星系群的观测。在我们的银河系以及邻近的星系中,到处都有作为宇宙射线的粒子在飞行,而它们不与任何天体发生湮灭,也就证明在我们的银河系和本星系群没有大的反物质天体的存在。

  但是,对于更远的星系我们就没有足够的根据了。因为,我们今天的天文观测只是接收远处天体的光,物质辐射光子,反物质便会辐射反光子,但光子是中性的,光子与反光子是完全相同的粒子,由此可见,对于更遥远的天体,我们今天还没有能力准确判断是由物质组成还是由反物质组成。当然,天体还辐射中微子,由物质辐射的中微子与由反物质辐射的反中微子肯定是不一样的,但中微子与任何物质的相互作用都很弱,正如太阳所发出的中微子可以畅通无阻地穿透地球,而几乎不发生什么损耗,因此,设计一个能接收它们的仪器是非常困难的。

  那么,关于反物质的威胁,暂且不论远处是否真的有众多的反物质的天体的存在,仅就3000万光年之内没有反物质天体的这一明确结论,我们就完全可以高枕无忧地生活于太阳系,因为在3000万光年之外即使有反物质天体正在对撞太阳系,至少也需要数百亿年之后才能到达,而数百亿年之后的太阳早已不存在了。

  四、宇宙的终结

  宇宙的终结无疑也是人类的终结,实际上,在宇宙远没有终结之前,便已经不具备人类生存的条件。那么,宇宙会以怎样的方式终结,并何时终结呢?

  我们的宇宙是一个快速膨胀的宇宙,它的膨胀动力来源于138亿年前的大爆炸,但是,宇宙中还有一种无所不在的力量制约这种膨胀,这就是物质之间的引力,引力的大小取决于宇宙中物质的质量,以及物质之间的距离。

  是宇宙的膨胀力最终战胜物质的引力,还是物质的引力最终战胜宇宙的膨胀力,这是决定宇宙最终命运的根本因素。如果宇宙膨胀的力量战胜宇宙物质的引力,宇宙将就此一直膨胀下去,称为开放宇宙。反之,如果宇宙物质的引力战胜宇宙的膨胀力,在若干亿年后宇宙的膨胀将会达到最大值,然后在引力的作用下开始收缩,并最后再回到宇宙的起点,这样的宇宙结局称之为闭合宇宙。大爆炸宇宙学所建立的宇宙模型,宇宙的最终结局只可能是这两种,那么宇宙到底会采取一种怎样的方式终结自己呢?

  如果能够确切地知道宇宙中物质的平均密度,确定未来宇宙的结局并不是一件很难的事,但是,宇宙中除了我们了解并不深入的可见物质之外,还有大量我们更加不了解的暗物质和暗能量,这就使得我们无法对宇宙的未来作出明确的判断。使得我们在这里的阐述只能分为两种假设。

  第一种,如果我们的宇宙是开放宇宙,我们周围的星系将继续远离我们而去,若干万亿年之后,我们所能看见的宇宙只有我们所在的本星系群的这30多个星系,而其他的星系则脱离了我们的视线范围,即使用任何观测仪器也无法看到,那时,我们观测到的宇宙仿佛只有今天宇宙的百亿分之一。

  处在其他的星系团(群)也会是同样的情况,因为星系团(群)作为宇宙中独立的天体系统,其内部的星系是联系在一起的,而之外的星系都将会远离而去,直到再也无法看到。

  各星系团(群)并不是静止的,内部的各个星系会不断地合并,使星系的规模越来越大,从而形成许多的超星系。由于恒星要依靠核聚变来发出光和热,在宇宙中的氢元素耗尽后宇宙中就只有褐矮星、中子星和黑洞,这些都是恒星死亡后的残骸,宇宙就此结束它的恒星时期,进入简并时期。这一时期将在数百万亿年后出现。

  简并时期比恒星时期长得多,至少持续到1037年后才结束。这一时期主要是恒星死亡后的残骸的相互碰撞,黑洞在这种碰撞中会吞噬一切残存的天体,而且黑洞也相互发生碰撞,在黑洞的碰撞中则是小黑洞并入大黑洞,由此,黑洞的质量变得越来越大。于是,在1037年后宇宙将进入黑洞时期。

  黑洞时期比简并时期更加长,在这一时期主要是黑洞的蒸发。黑洞的质量越大,表面温度越低,则蒸发的速度越慢,对于黑洞时期会持续多长无法计算,仅有一个概念可以作为参考,即一个太阳质量的黑洞蒸发期为1065年,而一个银河系质量的黑洞蒸发期则达10100年。当所有的黑洞都蒸发完后,宇宙将进入它最后的时期,即黑暗时期,这时的宇宙只有能量而不再有任何天体。

  第二种,如果我们的宇宙是闭合宇宙,宇宙将在许多许多亿年后达到它的最大值,然后停止继续膨胀,转而开始收缩。此时,站在银河系观察远方的星系时,各星系将不再是远离我们而去,而是向我们靠拢。这一天什么时候到来要视宇宙中物质和能量的情况而定,至少从今天看来宇宙还没有任何停止膨胀的迹象,不仅如此,从近年的观测看,宇宙有加速膨胀的趋势。这就说明,宇宙有许多我们还不了解的暗物质与暗能量的存在。由此也可知,在许多亿年之内宇宙不会停止膨胀,而且宇宙以开放宇宙终结自己的可能性更大。

  有一点基本上可以确定,如果是闭合宇宙,宇宙的收缩过程与宇宙的膨胀过程基本上是对称的,它有多长的膨胀时间便有多长的收缩时间。

  当宇宙的收缩离其终点还有138亿年时,宇宙辐射的背景温度也大致与今天的宇宙一样是3K左右;当距收缩终点10亿年时,背景温度上升到了30K,星系团开始合并;当距终点1亿年的时候,宇宙辐射的背景温度将上升到300K,也就是说,宇宙的普遍温度比今天地球的温度还高,生命已经很难在宇宙中生存;而后,随着宇宙的不断收缩,以及背景温度的不断升高,宇宙天空将由今天的黑暗颜色开始慢慢变亮,再变成一片火红;当距终点30万年的时候,宇宙温度高达3000K,原子全部被裂解,物质以核子、电子、光子和中微子的形式存在;而后天空将不再透明;当距终点1小时时,宇宙的温度达到1亿K,宇宙的主要成分为光子和中微子;距终点3分钟时宇宙温度达到10亿K,宇宙中充满电子、中微子和它们的反粒子,并有少数的质子和中子;当距终点10-4秒时,宇宙的温度高达10000亿K,宇宙中只剩中子、质子以及它们的反粒子;当距终点10-35秒时,宇宙的温度高达1027K,四种自然力归于统一;当距终点10-43秒时,宇宙的温度高达1032K,宇宙开始迅速收缩,而后达到终点。

  由于宇宙终结对人类的整体生存威胁离我们实在太遥远了,以至我们现在谈这些问题毫无直接意义,但作为阐述影响人类生存的若干因素中的一点,对于全面综合地说明问题是非常必要的。

  在对宇宙的研究中科学家发现,我们所知越多未知也越多。奇点是什么?黑洞内部发生了什么?暗物质是什么?这些以我们今天的研究水平都无从解答。但通过本节的阐述却能够明确地回答一个问题,这就是在若亿年的时间内,宇宙不会给人类带来灭顶之灾。有这一结论就足够了,这是我们本节研究的全部意义。